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R have the following matrix form: 

1[¢~ 0 ! ]  [ 1  O i l  0 , R 2= 1 1" , 
R=2- 2 0 0 

° 2] 0 , R 4 = E .  R 3 =~ 

R 2 is the C~2 ~ Ha element and we may construct Gal 
by making use of the C2 ~ Ha element. Therefore, 

G al = { R, R 2, R 3, R 4} + C2{ R, R 2, R 3, R 4} 

= { E, C~2, C~2, C2, R, R -a, C2R, C2R 3} 

and Gal is isomorphic to the D4 tetragonal symmetry 
group. 

This work was partially supported by the Greek 
Ministry of Research and Technology. 
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Abstract 

A combination of analytical expressions and a know- 
ledge of symmetry is employed for the displacement 
shift complete lattice (DSCL) base computation. The 
method is of general use and its application to cubic 
and hexagonal systems is given. Tables containing all 
the symmetrically equivalent descriptions of one and 
the same coincidence site lattice (CSL) as a function 
of one description are given for both cubic and 
hexagonal systems. 

1. Introduction 

Since the grain boundary (GB) cannot be described 
only on the basis of absolutely exact coincidence site 
lattice (CSL) orientations, the study of equilibrium 

grain boundaries in the vicinity of a CSL condition 
is a real necessity and a completion to a full CSL 
study. It has been experimentally shown that the 
deviation of a few degrees from the exact CSL condi- 
tion is usually accommodated by a dislocation array. 
The Burgers vectors of such a dislocation array are 
related with the approximate CSL if they are members 
of the corresponding displacement shift complete 
lattice (DSCL) (Bollmann, 1970). 

According to the reciprocity theorem, which has 
been established by H. Grimmer, there is a one-to-one 
correspondence between the CSL and the DSCL, and 
the DSCL base can be found if the CSL base is known 
(Grimmer, 1974). An application of this elegant state- 
ment, which is of general character, was given for the 
DSCL of the cubic system for CSLs up to X = 49 by 
Grimmer, Bollmann & Warrington (1974). Unfortu- 
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nately, there are computational difficulties and 
ambiguities in this procedure, which have been men- 
tioned by other authors, who proposed different 
algorithms of a more general character (Bonnet & 
Durand, 1975; Bonnet, 1976; Karakostas, Nouet & 
Delavignette, 1979). 

In this paper we present a method for the calcula- 
tion of the DSCL base using the symmetry properties 
of the CSL (Doni, Bleris, Karakostas, Antonopoulos 
& Delavignette, 1985).t A general procedure is pre- 
sented, which reduces the DSCL computation to the 
determination of some analytical expressions, allow- 
ing the construction of a primitive DSCL base for 
every CSL of the given crystal system in a very simple 
way. Moreover, both CSL and DSCL are referrred 
to the same coordinate system, which is a considerable 
help for the experimental study of GBs. 

2. The basic idea 

According to Grimmer's theorem, the DSCL can be 
defined if a base [x*] of the reciprocal coincidence 
lattice of a given CSL is known (Grimmer, 1974). In 
fact, the DSCL base [x] is connected with the [x*] 
base by the relation 

[x] = ([x*]- ')  r , (1) 

which expresses the reciprocity theorem. 
From (1) it is obvious that the problem of determin- 

ing the DSCL is simply equivalent to the calculation 
of the base [x*]. Noting by CSL the direct coincidence 
lattice and by CSL* its reciprocal, we shall use the 
same notation as in paper I for the different quantities, 
using a star when they are referrred to the CSL*. 
Thus, for the determination of [x*] it is enough to 
know the rotation matrix R* and a base [x*] 1 of A ~*, 
since 

R*[x*]l  = [x*]~ = [x*]. (2) 

The CSL* rotation matrix R* is easily obtained by 
a similarity transformation of the rotation matrix R 
of the corresponding CSL, 

R* = SRS -1, (3) 

where S is the matrix transforming a vector of the 
direct space to one of the reciprocal space. The 
difficult question to be answered is how to determine 
the base Ix*] I. 

Let us consider the symmetrically equivalent 
descriptions of the CSL*, i.e. 

R* = g ' R * ,  j j =  1 , 2 , . . . ,  [G*], (4) 

where [G*] is the order of the symmetry group of 
the A~* lattice. We know that all the eigenvectors r~ 
of R~ are vectors of the A ~* sublattice. Since 

R*A~* A~* A* = = 12, (5) 

t In the following, this work will be referrred to as paper I. 

we have 

V r~: F* = R*r~ ~ R ' r *  ~ CSL*. (6) 

From this last relation it is obvious that we can 
have a primitive CSL* base if we can find among the 
different r* vectors three vectors with volume equal 
to ~, i.e. the multiplicity of the CSL, which remains 
the same for the CSL*. 

If we take into account that the CSL properties, 
which are used in the theoretical treatment given by 
Bleris (1983), are still valid for the CSL*, we can say 
that there is always a solution between the different 
eigenvectors of the symmetrically equivalent rotation 
matrices. 

What remains to be found are the analytical 
expressions of the different eigenvectors. We shall 
examine the cubic and the hexagonal systems, since 
for those two systems all the information conceming 
the symmetry has already been published in paper I. 
A comparison of our results can be made with the 
data given by Grimmer et al. (1974) for the cubic and 
by Bonnet, Cousineau & Warrington (1981) for the 
hexagonal systems. 

3. Cubic system 

For the simple cubic lattice direct and reciprocal- 
space vectors are expressed by the same indices and 
the rotation matrix R * -  = R. The analytical form of 
this matrix has been extensively studied by Bleris & 
Delavignette (1981). They have shown that the ele- 
ments of the matrix are a function of the multiplicity 
of the CSL, 2, of the Miller indices of the rotation 
axis, u, v, w, and of three integer parameters m, n, a 
whose conditions limiting their possible values have 
been established. The matrix elements, as a function 
of 

~ , , u , v , w , m , n , a  (7) 

allow an easy determination of all possible CSLs. Its 
expression is given in equation (31a) of Bleris & 
Delavignette (1981). By computing the products 

R~=g~R, j =  1 ,2 , . . . , 24 ,  (8) 

where g~ is the 3 x3 matrix representation of the 
symmetry elements of the cubic system given by 
Karakostas, Blefis & Antonopoulos (1979), we can 
take the analytical expressions of the symmetrically 
equivalent descriptions of the given CSL. In Table 1 
the relation 

a 2  cos 2 0/2 (9) 

as well as the indices of the rotation axis for each of 
the equivalent descriptions as functions of the integer 
numbers of (7) are tabulated. The rotation angle 0 
can easily be obtained from (9). 

The information given by this table can be used 
beyond our main purpose. For example, this classifi- 
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Table 1. Angles and rotation-axis indices of  the different descriptions of  the cubic CSLs 

ot~ cos  z ( 0 / 2 )  Ur Or Wr 

1 m z u v w 
2 (un-m)Z/2 un+m (v-w)n (v+w)n 
3 (vn-m)Z/2 -(u+w)n -(vn+m) (u-w)n 
4 (wn-m)V2 (v-u)n -(u+v)n -(wn+m) 
5 (un+rn)Z/2 un-m (v+w)n (w-v)n 
6 (vn+m)2/2 (u-w)n vn-m (u+w)n 
7 (wn+m)Z/2 (u+v)n (v-u)n wn-m 
8 {[(u+v+w)n-m]/2} 2 (v-u-w)n-m (w-u-v)n-m (u-v-w)n-m 
9 {[(u+v-w)n+m]/2} z ( u - w - v ) n - m  ( u + v + w ) n - m  ( u - v + w ) n + m  

10 {[(v-u+w)n+m]/2} 2 ( u + v - w ) n + m  ( v - u - w ) n - m  ( u + v + w ) n - m  
11 {[(u-v+w)n+m]/2} 2 ( u + v + w ) n - m  ( v - u + w ) n + m  ( w - v - u ) n - m  
12 {[(u+v+w)n+m]/2} 2 ( u + v - w ) n - m  ( v + w - u ) n - m  ( u - v + w ) n - m  
13 {[ (u+v-w)n-m] /2}  2 - ( u + v + w ) n - m  ( u - v + w ) n - m  ( u - v - w ) n + m  
14 {[( -u+v+w)n-m]/2}  z ( u - v + w ) n - m  (u+v+w)n+m ( w - v - u ) n + m  
15 {[ (u -v+w)n-m] /2}  2 ( v - u + w ) n - m  ( w - u - v ) n + m  - ( u + v + w ) n - m  
16 (u+v)2n2/2 -(wn+m) wn-m ( u - v ) n  
17 (u-v)2nZ/2 w n - m  wn+m - (v+u)n  
18 (u+w)ZnZ/2 v n - m  (w-u )n  - v n - m  
19 (v+w)ZnZ/2 ( v -w)n  -(un+m) u n - m  
20 (u-w)ZnZ/2 (vn+m) - (u+w)n v n - m  
21 (v-w)Zn2/2 - (w+v)n  u n - m  un+m 
22 uZn z - m  wn -vn 
23 vZn 2 -wn - m  un 
24 w2 n 2 vn -un - m  

Table 2. The smallest values of  the determinants of  the 
vectors of  Table 1 in triplets 

(u-v)ot.S (2u -v -w)a .S  ( u - 2 v - w ) a Z  ( u - v - 2 w ) a Z  
(u-w)ot£ (2u -v+w)a£  (u-2v+w)a.S (u -v+2w)aZ  
(v-w)a.S (2u+v-w)ct~ (u+ 2v-w)ct.Y, (u+v-2w)a.S 

( u - v - w ) a . S  ( u - v + w ) a Z  (u+v-w)a.~ 
ua2~ va~ wot.S 

cation, which appears for the first time, reduces the 
necessary library for every cubic CSL to only one 
piece of information, the smallest-angle description. 
All the other descriptions of this CSL are obtained 
from Table 1. Moreover, by inspection of Table 1, 
one can see some properties of the CSL considered. 
For example, if the smallest-angle description has 
two equal indices, it can be immediately seen from 
expressions 17, 20, 21 of Table 1 that there exists at 
least one 180 ° description for this CSL. 

Let us now examine the DSCL construction. For 
a given CSL we know its symmetry by taking into 
account the theory established in paper I. Thus, from 
the corresponding Table 1 of this CSL, we can find 
a conventional base by making use of the symmetry 
axes. As a matter of fact the conventional unit cell 
and the primitive unit cell do not coincide for every 
Bravais lattice. But it is always possible to establish 
a relation between them and this is done for instance 
in Table 2.2.2 of Vol. I of International Tables for 
X-ray Crystalllography (1969). The procedure for the 
construction of the CSL* base will be shown analyti- 
cally in a following example. 

For the establishment of a general procedure, 
which could give the maximum information in a short 
time, we make use of Table 1 for every CSL and we 
take all the combinations of the different triplets, 
keeping the first axis invariant. We have computed 

these 253 combinations analytically and we give the 
smallest values of their determinants in Table 2. 

The computational algorithm for the construction 
of the DSCL base is now reduced to the following 
procedure: 

(i) We compute all the axis-angle pairs of the 
symmetrically equivalent descriptions by using 
Table 1. 

(ii) From the 24 axes we take all the combinations 
of three vectors by keeping the first axis invariant. 

(iii) From their determinants we choose a triplet 
with volume equal to 2. This triplet defines a primitive 
base of A~. 

(iv). We apply to this triplet the matrix R of the 
smallest angle (or the first) description and a primitive 
DSCL base can be obtained by taking the inverse 
transpose of the result. 

With these four steps, which take a few seconds 
on a personal computer, a primitive base can always 
be defined. Moreover, it should be pointed out that 
in step (iii) we can take all the triplets of volume 
equal to ~ and choose from them the one with the 
shortest vectors, as well as take into account the 
symmetry of the CSL that can give us a conventional 
base. 

We will now consider an example, following a step 
by step procedure, where the symmetry has been taken 
into account. The Z = 13a CSL with smallest-angle 
description data 

u = l ; v = O ; w = O ; m = 5 ; n = l ; a = 2  (10) 

gives the results of Table 3 by using the relations of 
Table 1. 

From Table 3 we can choose a triplet, taking into 
account that the ,~ = 13a CSL has tetragonal sym- 
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Table 3. Symmetrically equivalent descriptions of 
= 13 a CSL of the cubic system 

,9 [uvw] ,9 [uvw] ,9 [uvw] 
. . . .  

1 22.619 100 9 107.920 223 17 164.058 551 
. . . . .  

2 112.619 100 10 133.813 332 18 164.058 515 
. . . . . .  

3 92.204 151 11 107.920 223 19 180.000 032 
. . . . . . . .  

4 92.204 115 12 107.920 232 20 164.058 515 
5 67.380 i00 13 133.813 323 21 180.000 023 
6 92.204 151 14 107.920 232 22 157.380 100 
7 92.204 1i5 15 133.813 323 23 180"000 051 

. . . . . . .  

8 133-813 332 16 164.058 551 24 180.000 015 

metry (see paper I). Thus, the triplets 

[O 0 i l  [ 1  0 i ]  2 and 0 5- (11) 

3 0 1 

have the symmetry properties, i.e. three mutually per- 
pendicular vectors, two of them being 180 ° symmetry 
axes. Moreover, we can see that the determinant of 
the first matrix has a volume equal to 13 and, there- 
fore, this is the convenient one for the CSL base 
computation. The second one has a volume equal to 
26 and it can represent only a conventional base. By 
applying the smallest-angle rotation matrix R to the 
first matrix, we get 

5 , (12) 

2 

which is the CSL base. By taking the inverse transpose 
of the previous matrix, which gives the product 2 × 
DSCL with the form 

0 5 , (13) 

0 2 

the DSCL base can be obtained. 
Finally, we should point out that our results have 

been compared with the results given by Grimmer et 
al. (1974). There is good agreement in almost all cases. 
The same type of vectors have been used, but they 
sometimes differ in the orientation. It can be easily 
deduced that these differences do not have any 
influence on the results obtained, and this is because 
they are looking for a numerical solution of the system 
(2) and from this the Bravais class is defined by the 
method described by Mighell, Santoro & Donnay in 
International Tables for X-ray Crystallography (1969). 

4. Hexagonal system 

The previous analysis for the cubic system is more 
or less of academic interest, since the cubic CSLs 
have been investigated by many authors. The 
hexagonal CSL and DSCL, however, are still under 
investigation, as can be seen from the recent literature 

Table 4. Angles and rotation-axis indices of the differ- 
ent descriptions of the hexagonal CSLs 

4 a ~  cos z ( 0 / 2 )  u, vr w, 

1 12/zm 2 u v w 
2 91zmZ+~wn[wn-6m] 2(2u-v)n 2(u+v)n 3(m+wn) 
3 3lzm2+3lxwn[wn-2m] 2(u-v)n 2un 3m+wn 
4 31zm2+3l~wn[wn+2m] -2vn 2(u-v)n 3m-wn 
5 9tzm2+tzwn[wn+6m] -2(u+v)n 2(u-2v)n 3(m-wn) 
6 ( 2 u -  1))2V?l 2 2(3m - wn)# -4wlzn 3vvn 
7 (u-2v)2vn 2 -4wlzn -2(3rn+ wn)l~ 3urn 
8 (u+v)Zvn 2 -2(3m+wn)~t 2(-3m+wn)tz 3(u-v)vn 
9 3(u-v)2vn 2 2(m-wn)l~ -2(m+wn)l~ (u+v)vn 

10 3uZvn z -4mtz 2(-m+wn)l~ (u-2v)vn 
11 3vZvn 2 -2(m+wn)tz -4mlz (2u-v)vn 
12 4tzw2n 2 (u-2v)n (2u-v)n 3m 

(Fortes, 1983; Grimmer & Warrington, 1983). Thus, 
the application of the previous theoretical treatment 
to the hexagonal system is of great interest. 

The only difficulty for the hexagonal system is the 
difference between direct and reciprocal space. This 
means that we have to find first the symmetry- 
equivalent rotation matrices for the direct space and 
then the reciprocal ones, by using (3). 

The general expression of the rotation matrix has 
been established by Bleris, Nouet, Hag~ge & 
Delavignette (1982). The elements are functions of 
the parameters ~ and v, where/z /v  = (c/a) 2, and the 
same parameters as presented for the cubic case. The 
rotation matrix has been given in equation (25) of 
Bleris et al. (1982). Also, the expression for the smal- 
lest-rotation-angle description has been given. The 
symmetry elements have been given by Hag~ge, 
Nouet & Delavignette (1980). From those, we have 
determined all the matrices 

Rj=giR, j =  1 , 2 , . . . ,  12. (14) 

Their eigenvectors and the corresponding cos 2 0/2 
expressions are given in Table 4. This classification 
is also presented for the first time and some useful 
results can be directly obtained. We know that for 
m = 0 the rotation angle is equal to 180 ° (Bleris et al., 
1982). By putting m = 0 in Table 4, we take three 
cases where the corresponding axis has one index 
equal to zero, i.e. cases 10, 11, 12 (Table 4). Recipro- 
cally, if we choose a description around an axis with 
an index equal to zero, then there is at least one 
description of 180 ° , as can be easily deduced from 
expressions 10, 11, 12 for the angles. We can also see 
that if it happens to be 2u = v, there will be a 180 ° 
description (case 6). Moreover, many other cases 
could be obtained by a combination of the previous 
ones or by a systematic investigation of the different 
cases arising from the different values the integer 
numbers u, v, w, m, n, a,/z, v may have. 

For the reciprocal-space CSL* the rotation matrix 
R* of the smallest-angle description has the usual 
form: 

R* = (1 /~ ) [  r~/ce]; (15) 
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Table 5. Rotation-axis indices o f  the different descrip- 
tions o f  the hexagonal CSLs in the reciprocal space 

u* v* w* 
1 ( 2 u - v ) u  ( 2 v - u ) u  2wlz 
2 (u - v) pn vun (m + wn)~ 
3 ( u - 2 v ) u n  ( u + v ) u n  (3m+ wn)tz 
4 - v u n  m,n 2mlz 
5 - ( u + v ) u n  ( 2 u - v ) u n  ( 3 m - w n ) l z  
6 - u r n  ( u - v ) u n  ( m - w n ) l z  
7 - 2 w n  w n - 3 m  ( 2 u - v ) n  
8 - ( 3 m + w n )  2wn ( u - 2 v ) n  
9 3 m - w n  - ( 3 m + w n )  ( u + v ) n  

10 2m - ( w n  + m) vn 
11 m - wn - 2 m  un 
12 - ( w n + m )  w n - m  ( u - v ) n  

and the integer expressions r* have the following 
f o r m s :  

r*l = 

r*2 = 

r*3 = 

rE*l= 

rE*E = 

r*3 = 

ra*a= 

rE*E = 

r3"3 = 

a n d  

(2u - v )uvn2 -2wt zmn  +3/zm 2 -  dn 2 

(2u - v) vt, n 2 - 4wlzmn 

[(2u - v ) w n 2  ÷ 3vmn] u 

(2v - u) uun 2 + 4wtzmn 

(2v - u)w,  n2 + 2wlzmn + 3/zm 2 -  dn 2 

[ ( 2 v - u ) w n 2 - 3 u m n ] v  

[2uwn 2 + 2(u - 2v) mn]tz 

[2vwn2 + 2(2u - v)mn]l~ 

2 w2/~n 2 + 3/~m 2 - d n  2 

(16) 

d = (u 2 + v 2 -  u v ) v +  i~w 2, (17) 

where u, v, w, m, n, a , /~,  u are the integer numbers 
describing the given CSL in the direct space. The 
different rotation axes r * , j  = 1, 2 , . . . ,  12, of  the CSL* 
symmetrically equivalent descriptions are given in 
Table 5. The smallest values of the determinants of  
their combinations in triplets are given in Table 6. 
We should like to point out that since the values of 
the parameter a are variable depending on the/z ,  v 
values, the a value can always be eliminated from 
the expressions of the rotation-axis indices. Thus, 
from the values of Table 6 and using the previous 
classification [see divisibility rules in Bleris et aL 
(1982)], we can have the following cases of divisi- 
bility. 

A. (3/zm 2, dn 2) - 1 
(i) If a = 2 and u -- 0mod2, the vectors r*, r* have 

even indices. 
(ii) If  a = 4 and v ~ 0rood2, then 

u - 0mod2, v --- 0mod2, w - lmod2 

m - lmod2,  n - lmod2 

Table 6. The smallest values o f  the determinants o f  the 
vectors o f  Table 5 in triplets 

u( 2u - v )a.~ u( u - v )a.S voa.~ 
u( u - 2v)a,~ 2wot.~ vua.~ 

B. (3/zm 2, d n E ) - p ( p ~  1) 
(i) If  (3, d ) -  3, then 

u + v - 0mod3, w - 0mod3, (u, v) - 1 

and 

2u - v - 0rood3, 2v - u - 0rood3. 

In this case the vectors r*, r*, r*, r*, r*, r* have 
indices that  are multiples of  3. 

(ii) If  (tz, d ) - q ( q ~ l ) ,  then there are two 
possibilities: either 

---- 0mod3, with/z  - 0mod3 and (u, v) - 1 

o r  

a - 0modq, with (u, v) - 1. 

The first case is similar to B(i) and the second one 
implies that, for j = 1, 2 , . . . ,  6, the r* vectors have 
indices that  are multiples of  q. 

(iii) If  (m, d) - t( t  # 1), then there are again two 
possibilties: firstly, t = 2 and /z -- 0mod2 and, 
secondly, t # 2 and w - 0modt. For the first ease the 
parameter a can be eliminated from the first six 
vectors, and for the second case we have v - - 0 m o d t  
and a is eliminated from the r* vector. 

(iv) If  (3, n ) -  3, a is eliminated from the vectors 
r*, 

(v) If  (tx, n) - -p (p  ~ 1), a can be eliminated from 
the first six vectors of Table 5. 

From the above analysis we can ensure that there 
are always some combinations of three vectors form- 
ing a primitive cell. If  there is not such a possibility, 
we can choose two triplets that correspond to a 
non-primitive CSL* base and define from them 
a non-primitive one (Bleris, 1983). 

Example: In order to show the procedure for the 
case of  non-primitive cells, we have chosen a trivial 
hexagonal CSL, which exists for a n y / z / u  value but 
for which the following values are considered; 

2 ; =  13~/z =8 ,  u = 3 ,  m = 7 ,  n = 3 ,  a =96,  

and 
[uvw]=[O01]. 

For this CSL the triplets with the vectors (r*, r*, r 'a) 
and (rl*, rl*o, r 'a) give determinants with values 

det [(r*), (r*), (r*0] = 4 w a 2  = 4 x l  ×96 x 13 

= 4992 

det [(r*), (r*o), (r1"1)] = - 2 w a Z  = - 2  × 1 ×96 × 13 

and the indices of  all the r* vectors are even numbers. = -2496. 
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The coordinates of these vectors are obtained from 
Table 5: 

r~*: (0, O, 16) 

r*: (2-4, 6, 0) 

r*o: (14, 1--0, 0) 

r~*," (4, 17, 0). 

By eliminating the common factors, we end up with 
the following bases: 

B*=  1 , 

0 

with determinants 

det [ B * ] = 2 x 1 3  and 

By solving the equation 

B*= 0 5- , 

1 0 

det [B*] = - 3  x 13. 

2x -- 3y = 1 

we have two obvious solutions: ( x ,y )=  (5, 3) and 
(x, y) -- (2, 1). From these we may have the following 
cases: 

O 4 x 5 + 3 x 7  
B* = 1 x 5 + 3  x 5  

0 

with det [B*] = 13 and 

"[?~ 4 x 2 + l x 7  

BE *=  1 ×2+1  X5 

0 

!][o 
= 0 10 

1 0 

0 3- . 

1 0 

By taking the rotation matrix R* from (15), (16) and 
putting in the given CSL data we can define a CSL* 
base by the multiplication 

R*B*~-~-- 15 0 0 3-" 
0 13 1 0 

0 

By taking the inverse transpose of the previous matrix, 
which gives the product 2 x DSCL with the form 

0 5 , 

13 0 

the DSCL base can be obtained. 

5. Discussion 

According to the theory that was previously estab- 
lished above for the cubic and hexagonal CSL, the 

analytical form of the CSL rotation matrix has been 
given as a function of the integer numbers u, v, w, m, 
n, a and/z,  u, which characterize a given CSL. The 
construction of this matrix is, in principle, possible 
for any crystallographic system. 

Using this analytical form and the results of paper 
I, we present here a method for determining the DSC 
lattice of a given CSL using the data of the CSL itself. 

The advantages of this work are simply that the 
Euclidian algorithms used in the past for the solution 
of the same problem and their difficulties in the appli- 
cation to different crystallograhic systems have been 
overcome. From the practical point of view, we suc- 
ceeded in having analytical expressions, which can 
be obtained for every system if the analytical form 
of their rotation matrix is known. These expressions 
can give all the necessary information for the different 
descriptions of one and the same CSU 

From the previous sections of this paper, it is 
obvious that, using the symmetry information of 
paper I, we can select a unit cell in such a way that 
this unit cell clearly exhibits the symmetry of the CSL. 
This conventional choice may be a non-primitive one, 
i.e. it may contain the equivalent of more than one 
lattice point, but it may be useful for the study of the 
CSL. This can be done directly by using paper I and 
the tables of the analytical expressions of the rotation 
axes of this work. 

We have treated many /z/u ratios of hexagonal 
CSLs. Comparing with relevant published results 
(Bonnet et  al., 1981), we found very good agreement. 
In some cases we have the same type of vectors but 
different orientations. In some other cases an obvious 
combination gives identical results. 

Finally, it should be noted that the computational 
algorithms are very simple and very quick. Especially 
for the hexagonal system, where there are only 55 
combinations to be taken into account, the computa- 
tional time is negligible. 

This work was partially supported by the Greek 
Ministry of Research and Technology. 
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.Abstract 

The sign inversion of the forbidden reflection 442 in 
silicon between room temperature and 700 K has been 
verified using multiple beam diffraction and the con- 
cept of virtual Bragg scattering. A similar determina- 
tion in the case of germanium confirms that the 442 
is mostly due to anharmonic effects at room tem- 
perature. 

2-4 ° away from full excitation. It has been proved in 
our previous work (Chapman,  Yoder & Colella, 1981) 
that the asymmetric pattern observed around a strong 
Umweganregung peak contains phase information. 

To test this idea in a very clear cut case, we decided 
to verify the phase change of the 442 reflection in 
silicon at two different temperatures.* The forbidden 
442 reflection in silicon was measured several years 
ago (Trucano & Batterman, 1972), and found to 

It is well known that n-beam diffraction can be used, 
in principle, to determine phases in X-ray or neutron 
reflections (Colella, 1974; Post, 1977). Progress has 
been hindered so far by the fact that n-beam dynami- 
cal theory, the only one that preserves phase informa- 
tion, is strictly applicable to perfect crystals such as 
germanium and silicon, and it was not clear how it 
could be applied to real mosaic crystals. It was pro- 
posed (Chapman,  Yoder & Colella, 1981), in 1981, 
that virtual Bragg scattering (VBS), a situation in 
which all interactions are deliberately kept weak, 
might provide a way to deal with mosaic crystals. 

In practice, a VBS situation is one in which a weak 
reflection is fully excited and its integrated intensity 
is measured by varying 0, the angle of incidence on 
the lattice planes. At the same time one or more extra 
reflections are excited by choosing a suitable value 
for ~, the azimuthal angle around the scattering vec- 
tor, in such a way as to keep the excitation weak. In 
a plot of Rho kl VS q~, Rho k~ being the integrated intensity 
of  the hkl reflection integrated with respect to 0 at 
constant q~, a VBS situation corresponds to points on 
the sides of  a strong Umweganregung peak, typically 

* Since silicon is centrosymmetric, all phases, including those 
of forbidden reflections, are 0 or or. 
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Fig. 1. Typical 442 rocking curve at T = 300 IC The zero on the 0 
scale is arbitrary. Intensity values are referred to a monitor count 
of 2 x 105, and the average counting time per point is approxi- 
mately 3 s. At this q~ value the 442 is about three times greater 
than the two-beam value, owing to perturbation effects intro- 
duced by the strong 111 Umweganregung peak, centered at about 
~p = 3.00 o. 
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